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1 RELATEDWORKS
Conventional Methods for Surface Parameterization: Con-
ventional methods to solve mesh parameterization generally fall
into one of the three categories. The first one is single-patch, fixed
boundary methods, e.g. harmonic parameterization[Wang et al.
2013], which projects the boundary vertices onto a circle in UV
space and computes two harmonic functions (one for 𝑢 and one
for 𝑣 coordinate). LSCM[Lévy et al. 2002], which is a single-patch,
free boundary parameterization method, minimizes the conformal
(angular) distortion. Unlike harmonic parameterization, it does not
need to have a fixed boundary. Both the aforementioned categories
can only deal with open surfaces with genus 0. The third category is
formally known as global parameterization method, which can deal
with meshes of arbitrary genus. They achieve this by cutting the
given mesh into the patch(es) and individually parameterizing each
patch. The generated per-patch maps are discontinuous around the
cut when laid down in the UV space. This discontinuity can be seen
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as seams on the 3D surface. Another class of global methods try
to detect one or more seams to cut the mesh to make it open and
then parameterize it. OptCuts[Li et al. 2018] and Boundary-First
Flattening[Sawhney and Crane 2017] fall into this category. There
are global seamless parameterization methods as well, but they are
out of the scope of this work.

Neural Methods for Surface Parameterization: Neural pa-
rameterization methods have gained popularity in the past few
years due to their ability to address ill-posed problems as well as
advancements in deep learning methodologies and hardware stack.
AtlasNet[Groueix et al. 2018] was one of the first works along these
lines, which tries to generalize on different classes of objects. How-
ever, its use case was directed more towards surface reconstruction
than surface parameterization. Another method, DGP[Williams
et al. 2018], builds upon AtlasNet and proposes an object-centric
way of surface reconstruction by overfitting a neural network rep-
resenting a local chart parameterization. Both methods use a fixed
number of patches for the surface parameterization but require
a different neural network for every patch, which is overkill and
difficult to scale. A recent work, AUV-Net[Chen et al. 2022], takes
a point cloud as input and learns parameterization of aligned sur-
faces (e.g., faces and humans in T-poses) using a cycle-loss and
smoothness loss. However they require all the geometries of the
same category and in the same orientation. Moreover, their patch
estimation method is very naive and can not scale to an arbitrary
number of patches. All the aforementioned learning-based methods
sample points in the UV space and learn to map it to a 3D surface,
thereby assuming the UV space itself, hence failing to produce a
plausible UV map. Another very recent method [Aigerman et al.
2022] learns intrinsic mapping of arbitrary surfaces in a supervised
fashion where a conventional method acts as the ground truth.

2 IMPLEMENTATION DETAILS
For PatchNet, we use DiffusionNet[Sharp et al. 2020] architecture
with 4-blocks, channel width of 128 and 64 eigenbasis vectors for
spectral acceleration. We use ReLU activations at intermediate lay-
ers and softmax function after the final output layer. The surface
parameterization module uses an 8 layer MLP with 1.3× 106 param-
eters for both forward and backward MLP with LeakyReLU activa-
tions in-between the layers and tanh at the final output layer. We
use the PatchNet loss weights {𝜆𝑐𝑜𝑠 , 𝜆𝑔𝑒𝑜 } = [1.0, 1.0] and the pa-
rameterization loss weights {𝜆1, 𝜆2, 𝜆3, 𝜆4} = [1.0, 1.0, 0.001, 0.001].
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Figure 1: Additional Qualititative Results

We use ADAM optimizer with a learning rate of 10−3 and batch size
of 1 on a single RTX 2080Ti GPU for all our experiments. The frame-
work is implemented in PyTorch Lightning, trained on a single RTX
2080Ti GPU.We use xatlas[jpcy 2022] to pack the individual patches
into the final UV atlas.

3 ADDITIONAL QUALITATIVE RESULTS
Figure 1 shows qualitative results of our framework on arbitrary
closed ((a)-(d)) as well as open meshes. The patches are extracted
and parameterized individually for open meshes to form a UV atlas.
In the case of (e), our method estimates a reliable surface parame-
terization even with high extrinsic curvature. Moreover, meshes (a),
(b) & (c) are the unseen test samples from their respective classes,
which are directly inferred. On the other hand, for meshes (d) &
(e), parameterization is obtained by training a network till conver-
gence. This shows that apart from learning parameterization in an
object-centric way, our framework can also generalize to a specific
class/category and perform well on category-specific samples.

4 ABLATION STUDY
4.1 Patch Extraction Module
Effect of Geodesic Loss: In section-3.1, we stated that the geodesi-
cally far-apart faces with high-cosine similarity might get assigned
to the same patch, producing unwanted patches of extreme cur-
vature. However, incorporating L𝑔𝑒𝑜 into the objective function
tends to sort out this issue as it penalizes the faces geodesically

Figure 2: Effect of geodesic loss on the patch extraction mod-
ule.
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Figure 3: Ablation of different losses in surface parameterization module.

far apart and belonging to the same patch. This improvement is
evident in Figure 2.

4.2 Surface Parameterization Module
Effect of DiffusionNet Embeddings: As described in the method
section of the main draft, the 𝑀𝐿𝑃𝑓 and 𝑀𝐿𝑃𝑓 −1 take a global
encoding𝜓 as input along with vertex position. This global encod-
ing/embedding is the combination of the DiffusionNet features of
all the vertices. Instead of using global encoding, per-vertex fea-
tures from DiffusionNet can also be passed directly to the MLPs as
input. However, we argue that per-vertex features are noisy and
capture minimal global context, resulting in an irregular UV space
and undesired UV coordinates. It can be observed in Figure 4 that
when global encoding of DiffusionNet features is incorporated, the
quasi-conformal error (QCE) drops. Moreover, from Figure 5, it
is clear that the global encoding 𝜓 provides the better context of
the global shape as compared to per-vertex embeddings, thereby
regularizing the UV space and hence producing better output both
qualitatively and quantitatively (minimal overlapping and lower
QCE value).

Figure 4: Use of Diffusion Net features provides global con-
text to the parameterization MLP and removing it results in
drastic increase of Quasi Conformal Error (QCE).

Effect of No of Patches on Parameterization: Figure 6 shows
the trade-off between distortion (value of QCE and ASE) and the
number of patches. With the increase in the number of patches, the
distortion follows an up and down curve but eventually reduces
significantly.

4.3 Effect of Loss Functions:
The cycle loss L𝑐𝑦𝑐𝑙𝑒 is crucial for self-supervised training of the
parameterization module. However, it is not sufficient to get desired
properties (isometricity, conformality etc.). Figure 3 demonstrate
the effect of additional loss functions, where the QCE value drops
when L𝑖𝑠𝑜 is introduced into the objective function, and it drops
further when L𝑎𝑛𝑔𝑙𝑒 & L𝑎𝑟𝑒𝑎 are also included.

Figure 5: Comparison of global and local diffusion embedding
inputs to forward MLP. Although diffusion is global process,
feeding per-vertex features results in depletion of output
quality.

5 LOSSES
The final objective function for surface parameterization is given
as:

L𝑝𝑎𝑟𝑎𝑚 = 𝜆1L𝑐𝑦𝑐𝑙𝑒 + 𝜆2L𝑖𝑠𝑜 + 𝜆3L𝑎𝑛𝑔𝑙𝑒 + 𝜆4L𝑎𝑟𝑒𝑎 (1)

The cycle consistency loss 𝐿𝑐𝑦𝑐𝑙𝑒 imposes bijectivity constaints
in the UV space, while the isometric loss 𝐿𝑖𝑠𝑜 imposes isometricity.
The isometric loss 𝐿𝑖𝑠𝑜 is designed to impose isometric constraint
in the UV space. Inspired by [Zigelman et al. 2002], the loss ensures
that the geodesic distance between a pair of vertices in 3D space
𝐺𝑑 ∈ R𝑉 ×𝑉 is equal to the euclidean distance 𝐸𝑑 ∈ R𝑉 ×𝑉 in the
UV space. The 𝐿𝑖𝑠𝑜 is given as:

L𝑖𝑠𝑜 = | |𝐺𝑑 , 𝐸𝑑 | | (2)

where | |.| | represents the 𝐿2 norm. This loss is imposed only on
geodesic distances less than a certain threshold 𝜎 . We choose 𝜎 =

0.2 for all our experiments.
We use 𝐿𝑎𝑛𝑔𝑙𝑒 loss to reduce conformal error in the UV space.

We take an 𝐿2 norm between the angles 𝜃3
𝑖=1 per face belonging to

𝐹 in the 3D space and faces 𝑓 in UV space, given as:
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Figure 6: Patches are used to obtain multiple open surfaces from closed surfaces. As we increase the number of patches, the
conformal and angular distortion gets reduced.
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where |𝐹 | is total the number of faces.
Similarly, 𝐿𝑎𝑟𝑒𝑎 loss is used to minimise the area distortion by

taking an 𝐿2 norm between the areas 𝑎𝑝 , 𝑎𝑞 of the faces 𝑓 in the
3D space and faces 𝐹 in UV space, respectively. The loss is given as
follows:

L𝑎𝑟𝑒𝑎 =
1
|𝐹 |

∑︁
𝑎𝑝 ,𝑎𝑞 ∈ 𝑓 ,𝐹

(
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)2
(4)

6 EVALUATION METRIC
We use Quasi Conformal Error (QCE) [Sander et al. 2001] and Area
Scaling Error (ASE) [Sawhney and Crane 2017] for evaluation of
the UV distortions. QCE measures the angular distortion based on
the ratio of the singular values of each face mapping. The ideal QCE
value is 1, and a higher value implies distortion. ASE measures the
scale factor of the mapped faces. Negative ASE values imply shrink-
age; positives imply increase, and zero implies no area distortion in
mapping.
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